首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53211篇
  免费   315篇
  国内免费   270篇
测绘学   1358篇
大气科学   2993篇
地球物理   9405篇
地质学   22791篇
海洋学   4307篇
天文学   11075篇
综合类   243篇
自然地理   1624篇
  2022年   487篇
  2021年   702篇
  2020年   755篇
  2019年   826篇
  2018年   3972篇
  2017年   3528篇
  2016年   2835篇
  2015年   725篇
  2014年   1443篇
  2013年   2038篇
  2012年   2368篇
  2011年   3924篇
  2010年   3472篇
  2009年   3827篇
  2008年   3193篇
  2007年   3864篇
  2006年   1780篇
  2005年   1150篇
  2004年   1083篇
  2003年   1129篇
  2002年   971篇
  2001年   787篇
  2000年   646篇
  1999年   402篇
  1998年   418篇
  1997年   447篇
  1996年   312篇
  1995年   341篇
  1994年   324篇
  1993年   275篇
  1992年   280篇
  1991年   289篇
  1990年   320篇
  1989年   258篇
  1988年   252篇
  1987年   254篇
  1986年   187篇
  1985年   298篇
  1984年   293篇
  1983年   290篇
  1982年   268篇
  1981年   261篇
  1980年   283篇
  1979年   196篇
  1978年   241篇
  1977年   201篇
  1976年   177篇
  1975年   183篇
  1974年   171篇
  1973年   206篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Three-dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington rotations (CR 2054?–?2153) during 2007/03?–?2014/08 using the spherically symmetric method from polarized white-light observations with the inner coronagraph (COR1) onboard the twin Solar Terrestrial Relations Observatory (STEREO). These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a magnetohydrodynamics (MHD) model as well as using data from the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO)-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7?–?9 months. Using 14 CR (\(\approx13\)-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6?–?4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry: they are somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7?–?8 months. In addition, it is found that the radial distribution of the mean electron density for streamers at Cycle 24 maximum is only slightly larger (by \(\approx30\%\)) than at cycle minimum.  相似文献   
992.
We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) temperatures. A 3D potential magnetic field extrapolation predicts the dominance of magnetic loops in the extent of both CBPs, which are clearly visible at the Si iv 1393.75 Å line formation temperature. Short, low-lying magnetic loops or loop segments are the integral parts of these CBPs at TR temperature. A correlation between the various parameters of Mg ii resonance lines (e.g. intensity, Doppler velocity, velocity gradient) is present in the region of magnetic loops or loop segments. However, a quiet-Sun (QS) region does not show any correlation. Doppler velocities as well as the full width at half maximum (FWHM) of these lines are very prominent in the magnetic loops and loop segments compared to the Doppler velocities and FWHM in the QS region. Higher red-shifts and FWHM at TR temperatures are directly related to the dominance of the energy release process in these regions in the framework of the nanoflare model. A magnetogram from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) reveals the existence of two opposite magnetic polarities in the extent of both CBPs, which is a very well established result. We find that one CBP is formed by the convergence of two opposite magnetic polarities, while the other is triggered by the emergence of a new magnetic field prior to the onset of this CBP.  相似文献   
993.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.  相似文献   
994.
The preflare phase of the flare SOL2011-08-09T03:52 is unique in its long duration, in that it was covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph, and because it showed three well-developed soft X-ray (SXR) peaks. No hard X-rays (HXR) are observed in the preflare phase. Here we report that no associated radio emission at 17 GHz was found either, despite the higher sensitivity of the radio instrument. The ratio between the SXR peaks and the upper limit of the radio peaks is higher by more than one order of magnitude than the ratio in regular flares. The result suggests that the ratio between acceleration and heating in the preflare phase was different than in regular flares. Acceleration to relativistic energies, if any, occurred with lower efficiency.  相似文献   
995.
Using differential emission measure tomography (DEMT) based on time series of EUV images, we carry out a quantitative comparative analysis of the three-dimensional (3D) structure of the electron density and temperature of the inner corona (\(r<1.25\,\mathrm{R}_{\odot}\)) between two specific rotations selected from the last two solar minima, namely Carrington Rotations (CR)1915 and CR-2081. The analysis places error bars on the results because of the systematic uncertainty of the sources. While the results for CR-2081 are characterized by a remarkable north–south symmetry, the southern hemisphere for CR-1915 exhibits higher densities and temperatures than the northern hemisphere. The core region of the streamer belt in both rotations is found to be populated by structures whose temperature decreases with height (called “down loops” in our previous articles). They are characterized by plasma \(\beta\gtrsim1\), and may be the result of the efficient dissipation of Alfvén waves at low coronal heights. The comparative analysis reveals that the low latitudes of the equatorial streamer belt of CR-1915 exhibit higher densities than for CR-2081. This cannot be explained by the systematic uncertainties. In addition, the southern hemisphere of the streamer belt of CR-1915 is characterized by higher temperatures and density scale heights than for CR-2081. On the other hand, the coronal hole region of CR-1915 shows lower temperatures than for CR-2081. The reported differences are in the range \({\approx}\,10\,\mbox{--}\,25\%\), depending on the specific physical quantity and region that is compared, as fully detailed in the analysis. For other regions and/or physical quantities, the uncertainties do not allow assessing the thermodynamical differences between the two rotations. Future investigation will involve a DEMT analysis of other Carrington rotations selected from both epochs, and also a comparison of their tomographic reconstructions with magnetohydrodynamical simulations of the inner corona.  相似文献   
996.
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.  相似文献   
997.
The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large asteroids were determined this way. One of the principal techniques for Earth-based measurement of the masses of asteroids involves astrometric observations of binary asteroids. The determination of relative coordinates is made rather difficult by the apparent proximity of components. The success of these efforts depends on the availability of instrumentation and the expertise of observers skilled in adaptive optics and speckle interferometry. Collaboration between different research teams and observers is absolutely necessary.  相似文献   
998.
999.
The telescope SBG (D = 0.42 m, F = 0.76 m) at the Kourovka Astronomical Observatory of the Ural Federal University has undergone an upgrade in 2005–2006. A CCD camera (Apogee Alta U32) and a new drive system were installed, and a new system for telescope and observation control was implemented. This upgrade required verifying the astrometric quality of the telescope. The data processing approaches tested when searching for the optimum CCD image processing technique combined TYCHO2 and UCAC2 catalogues with various reduction models and methods for choosing reference stars. Lorentzian and Moffat profiles were used in the measurement of pixel coordinates. It was demonstrated that the accuracy of SBG observations of main-belt asteroids with precisely determined orbits depends on their brightness and varies from 0.06” (11.5 m ) to 0.4” (18.5 m ). Regular SBG observations of comets and asteroids (mostly near-Earth and potentially hazardous ones) have been performed since 2007. Coordinates of 8515 positions of 720 asteroids and more than 1000 positions of 40 comets were obtained. The RMS deviations of observed coordinates from their calculated values are typically smaller than 1”: the average deviations for asteroids are 0.33” (in right ascension) and 0.34” (in declination); the corresponding values for comets are 0.37” (in α) and 0.38” (in δ). The results of observations are sent to the Minor Planet Center and are used to determine orbits more accurately and solve other fundamental and applied problems.  相似文献   
1000.
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov–Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号